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Abstract. The volatility of organic aerosols (OA) has emerged as a property of primary importance in understanding their 

atmospheric lifecycle, and thus abundance and transport. However, quantitative estimates of the thermodynamic (volatility) 

and kinetic parameters dictating ambient OA gas-particle partitioning, such as saturation concentrations (C*), enthalpy of 

evaporation (ΔHvap) and evaporation coefficient (γe), are highly uncertain. Here, we present measurements of ambient OA 

volatility at two sites in the southeastern U.S., one at biogenic-volatile-organic-compound (BVOC)-dominated rural setting in 15 

Alabama as part of the Southern Oxidant and Aerosol Study (SOAS) in June-July, 2013, and another at a more 

anthropogenically-influenced urban location in North Carolina during October-November, 2013. These measurements applied 

a dual-thermodenuder (TD) system, in which temperature and residence times are varied in parallel, to constrain equilibrium 

and kinetic aerosol volatility properties. Gas-particle partitioning parameters were determined via evaporation kinetic model 

fits to the dual-TD observations. OA volatility parameters values derived from both datasets were similar despite the fact that 20 

measurements were collected in distinct settings and seasons. The OA volatility distributions also did not vary dramatically 

over the campaign period nor strongly correlate with OA components identified via positive matrix factorization of aerosol 

mass spectrometer data. A large portion (40-70%) of measured ambient OA at both sites was composed of very low volatility 

organics (C*≤ 0.1 μg m-3). An effective ΔHvap of bulk OA of ~ 80-100 kJ mol-1 and a γe value of ~ 0.5 best describe the 

evaporation observed in the TDs. This range of ΔHvap values is substantially higher than that typically assumed for simulating 25 

OA in atmospheric models (30-40 kJ mol-1). TD data indicate that γe is on the order of 0.1 to 0.5, indicating that repartitioning 

timescales for atmospheric OA are on the order of several minutes to an hour under atmospheric conditions. The OA volatility 

distributions resulting from fits were compared to those simulated in the Weather, Research and Forecasting model with 

Chemistry (WRF/Chem) with a current treatment of SOA formation. The substantial fraction of low-volatility material 

observed in our measurements is largely missing from simulations, and OA mass concentrations are underestimated. The large 30 

discrepancies between simulations and observations indicate a need to treat low volatility OA in atmospheric models. Volatility 

parameters extracted from ambient measurements enable evaluation of emerging treatments for OA (e.g., secondary OA using 

the volatility basis set or formed via aqueous chemistry) in atmospheric models. 
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1. Introduction 

Organic aerosol (OA) is a dominant component of atmospheric fine particulate matter (PM2.5) (Jimenez et al., 2009; Zhang et 

al., 2007), which is linked with adverse human health and uncertain climate effects. Atmospheric OA is a complex mixture of 

thousands of individual organic compounds originating from a range of natural and anthropogenic sources. Primary OA (POA) 

is emitted directly into the atmosphere whereas secondary OA (SOA) is formed in the atmosphere via condensation of low-5 

volatility products of oxidation reactions of volatile organic compounds (VOCs). A large fraction of SOA in many parts of the 

globe, e.g., in the southeast U.S., is formed from biogenic-VOCs (BVOCs) (Goldstein et al., 2009; Goldstein and Galbally, 

2007). However, the mechanisms responsible for SOA production from BVOCs (Budisulistiorini et al., 2015; Goldstein and 

Galbally, 2007, 2007; Marais et al., 2016; Xu et al., 2015a, 2015b), its chemical composition and many important physical 

properties are largely undetermined (Goldstein et al., 2009; Schichtel et al., 2008; Weber et al., 2007). Therefore their 10 

representation in current atmospheric and climate models are highly uncertain (Hallquist et al., 2009; Liao et al., 2007; Pye et 

al., 2015; Pye and Seinfeld, 2010). 

One of the major sources of uncertainty in predicting SOA concentrations in atmospheric models arises from the poor 

understanding of gas-particle partitioning of chemical species comprising SOA (Hallquist et al., 2009; Jimenez et al., 2009; 

Seinfeld and Pankow, 2003). Gas-particle partitioning, dictated by the parameters that define OA volatility, plays a central role 15 

in determining OA lifecycle and thus its atmospheric abundance, transport, and impacts (Donahue et al., 2006; Jimenez et al., 

2009). At equilibrium, saturation vapor pressure (or equivalently, saturation concentration, C*; μg m-3) determines whether an 

organic compound is found in the particle- or gas-phase (Donahue et al., 2006; Pankow, 1994) and enthalpies of vaporization 

(ΔHvap) dictate the change in partitioning with temperature (Epstein et al., 2010). Although gas-particle partitioning is 

determined by the basic thermodynamic properties of OA species – their C* and ΔHvap (Donahue et al., 2006, 2012) – these, 20 

along with the impacts of non-ideal mixing on individual species, are generally unknown for ambient OA. Under changing 

conditions, gas-particle partitioning is also influenced by the kinetics of gas/particle exchange, for example due to barriers to 

mass transfer in solid or viscous particles or molecular accommodation at a particle surface (Kroll and Seinfeld, 2008). The 

overall kinetic limitation to mass transfer during repartitioning is typically described by an evaporation coefficient (γe) (also 

often called mass accommodation coefficient), which is highly uncertain for ambient OA and can dictate time-scales for 25 

partitioning (Saleh et al., 2013). Though current models assume OA to be at equilibrium within a model prediction time-step 

(several minutes to an hour) during atmospheric simulations, several studies have indicated that partitioning time scales could 

be as long as days or months (γe << 0.1) due to a highly viscous and/or glassy aerosol (Vaden et al., 2011; Zobrist et al., 2008). 

Quantitative measures of ambient OA gas-particle partitioning parameters (C*, ΔHvap,  γe)  are needed to provide inputs 

for, and to evaluate, atmospheric models. However, methods to quantitatively determine ambient OA volatility are in their 30 

infancy and the resulting estimates of parameters dictating OA volatility are highly uncertain (Cappa and Jimenez, 2010). 

Thermodenuder (TD) systems have been previously applied to measure ambient OA volatility (Burtscher et al., 2001; Huffman 

et al., 2009; Lee et al., 2010; Paciga et al., 2015; Xu et al., 2016). A TD system measures evaporation of sampled aerosol at 
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various temperature perturbations by systematically comparing the size distribution and/or aerosol mass concentration 

measured after heating in a TD and at a reference (“bypass”) condition (Huffman et al., 2008). Several efforts have been made 

to infer ambient OA volatility distributions by fitting observed evaporation in a TD using a model of evaporation kinetics 

(Cappa and Jimenez, 2010; Lee et al., 2010). However, since OA evaporation in a TD is dictated by a large number of 

independent parameters (e.g., C*, ΔHvap, and γe) (Cappa and Jimenez, 2010; Lee et al., 2010), it is difficult to constrain all 5 

parameters with a single-dimensional perturbation (e.g. varying TD temperature) to the initial equilibrium. Saha et al. (2015) 

showed that operating two TDs in parallel (dual-TD) that vary both temperature and residence time can provide tighter 

constraint on estimates of volatility parameter values (C*, ΔHvap, and γe) for single component OA via kinetic model fits to the 

observations. In Saha and Grieshop (2016), this approach was applied to determine volatility and phase-partitioning parameter 

values for laboratory α-pinene SOA. The resulting parameters are consistent with recent observations of low-volatility SOA 10 

(Jokinen et al., 2015; Zhang et al., 2015) and evaporation rates (Vaden et al., 2011; Wilson et al., 2015) observed by several 

techniques.  

This paper describes the application of the dual-TD approach during ambient observations from two different settings in 

the southeastern U.S. Measurements at a rural site during the Southern Oxidant and Aerosol Study (SOAS-2013) 

(https://soas2013.rutgers.edu/) leverage the range of complementary measurements available during this large field study. To 15 

provide a contrast, measurements were also taken several months later, under cooler conditions, in Raleigh, U.S., a small 

metropolitan area in a similar ecological zone, but with stronger influence from local anthropogenic emissions. The objectives 

of the study were to: (i) determine a set of volatility parameter values, such as OA volatility distribution using the Volatility 

Basis Set (VBS) framework (Donahue et al., 2006, 2012) and ΔHvap and γe,  that describe observations, (ii) examine the 

variability and consistency in ambient OA volatility distributions across diverse settings and conditions, (iii) examine 20 

relationships between extracted volatility distributions and OA composition and source contributions, and (iv) evaluate a model 

treatment of OA volatility by comparing the measured OA volatility distribution with that simulated by a chemical transport 

model using a current implementation of the VBS framework.  

2. Methods 

2.1. Measurement sites 25 

Ambient OA volatility measurements were conducted at two locations in the southeastern U.S., one in a forested rural setting 

and another in an urban location. Six weeks (June 1 to July 15, 2013) of continuous measurements were conducted in rural 

Alabama during the Southern Oxidant and Aerosol Study (SOAS-2013) field campaign. The SOAS field campaign occurred 

in summer 2013 at several locations in the southeastern U.S. in order to study the interaction of biogenic and anthropogenic 

atmospheric compounds with a focus on BVOCs and organic aerosols. The measurements reported here are from the main 30 

SOAS ground site (32.903°N, 87.250°W), near Talladega National Forest and Centreville, Alabama. The Centreville, Alabama 
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site is an ideal location to study volatility of OA dominated by secondary OA from BVOC precursors (Warneke et al., 2010) 

in the presence of a range of anthropogenic influences. An additional four weeks (October 18 to November 20, 2013) of 

ambient OA volatility measurements were conducted at the North Carolina State University (NCSU) main campus (35.786°N, 

78.669°W) in Raleigh, USA. The NCSU site, while in an area with plentiful tree cover and BVOC emissions, receives a 

substantially stronger influence from anthropogenic emissions due to its location within the Raleigh metro area. Section 3.1 5 

includes further comparison between two study areas. Here-in-after, the two data sets are referred to as ‘Centreville’ and 

‘Raleigh’.  

2.2. Dual thermodenuder operation and sampling strategy  

Measurements were collected using the dual TD experimental setup introduced in Saha et al. (2015) and only briefly described 

here. Two TDs operated in parallel, one at various temperature settings (temperature stepping TD; TS-TD) with a fixed, 10 

relatively longer residence time (Rt) and another at fixed temperature and various Rt settings (variable residence time TD; 

VRT-TD). The TS-TD temperature settings were 40, 60, 90, 120, 150, and 180 ℃ with ~50 s Rt, while the VRT-TD operated 

at 60 or 90℃ with Rt varying between 1 to 40 s (5-8 settings). All Rts reported here are calculated assuming plug flow at room 

temperature. Temperature effects on Rt were included during modeling of evaporation kinetics (discussed below) as Rt(TTD) 

= Rt(Tref)×(Tref/TTD), where Tref and TTD are the reference (e.g., room temperature) and TD temperature in K, respectively 15 

(Cappa, 2010). The time to run through all temperatures and Rt steps during measurements was ~ 4-5 hours. 

A schematic of the experimental setup is shown in Fig.1. Three Scanning Mobility Particle Sizers (SMPS, TSI Inc; Model 

3081 DMAs; Model 3010/3787 CPCs) simultaneously measured aerosol size distributions (10-600 nm) in 3 parallel lines (two 

TDs and one bypass). An Aerosol Chemical Speciation Monitor (ACSM, Aerodyne Research Inc.) alternated between the 

bypass and TS-TD lines at ~ 20-30 minute intervals using an automated 3-way valve system. The ACSM measured the sub-20 

micron aerosol (~ 75-650 nm) mass concentration of non-refractory chemical species (organic, sulfate, nitrate, ammonium, 

and chloride) (Ng et al., 2011a). 

All aerosol instruments and TD inlets were inside a temperature-controlled (25˚±2) trailer in Centreville, and laboratory 

room in Raleigh. Ambient air was continuously sampled through a sampling inlet located on the rooftop of a trailer/building 

(~5 m above ground level). The sampling inlet included a PM2.5 cyclone (URG Corp, 16.7 L min-1) followed by a ~ 8 mm inner 25 

diameter copper sample line. A silica gel diffusion dryer upstream of TD inlets and aerosol instruments maintained relative 

humidity (RH) < 30-40%. 

2.3. Quantifying OA evaporation  

Evaporation of bulk OA at a particular TD operating temperature and residence time is described in terms of mass fraction 

remaining (MFR). OA MFR is the ratio of OA mass concentration measured after passing through TD to that measured via 30 

the bypass (room temperature) line. For quantitative assessment of aerosol volatility, such as during modeling of aerosol 
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evaporation, the initial OA concentration (COA) and particle size are also needed. Empirically estimated particle loss correction 

factors as a function of TD temperatures and residence times (Saha et al., 2015) and instrumental inter-calibration factors were 

applied in MFR calculations. Since the VRT-TD line was measured with the SMPS only (Fig.1), it provided only information 

on evaporation of submicron aerosol in terms of its volume concentration. We estimated the OA MFR from VRT-TD/SMPS 

data assuming measured aerosol volume was comprised of OA and ammonium sulfate (AS) only. This is a reasonable 5 

assumption under these conditions because more than 90% of measured aerosol volume concentrations can be explained by 

OA+AS for both sites (see supplementary information; SI, Fig. S1). Our calculations also assumed that AS did not evaporate 

at the VRT-TD operating temperatures (60 or 90˚C) (Fig. S2). For further detail on the estimation of approximate OA MFR 

from VRT-TD/SMPS data, see SI, section S.1. 

2.4. Determining OA phase partitioning parameters  10 

We apply a previously described volatility parameter extraction framework (Saha et al., 2015; Saha and Grieshop, 2016) to 

extract a set of volatility parameter (C*, ΔHvap, γe) values via inversion of dual-TD data using an evaporation kinetics model. 

The approach is outlined briefly below. The resulting fit describes OA using a log10 volatility basis set (VBS) framework 

(Donahue et al., 2006, 2012), where material is lumped into volatility bins separated by orders of magnitude in C* space at a 

reference temperature (Tref; 298 K). The volatility distribution extracted using this approach is an empirical estimate describing 15 

the bulk volatility behavior of OA, assuming absorptive partitioning and ideal mixing (unity activity coefficient) (Donahue et 

al., 2006, 2012).  In the VBS approach, total OA concentration (COA; μg m-3) is modeled using Eq. 1. 

1
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i OA
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C C f
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  (1) 

Here, Ctot is the total organic material (vapor + aerosol) in phase equilibrium with COA; fi is the fraction of Ctot in each volatility 

(log10C*) bin. Thus, fi = Ctot,i/Ctot, describes the distribution of organics in volatility space and is usually called the ‘volatility 

distribution’. 20 

The Clausius-Clapyeron equation (Eq. 2) is used to represent temperature dependent C*. 
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Where R is the gas constant and ΔHvap is the enthalpy of vaporization. 

To extract the volatility distribution of OA from ambient measurements, we select lower and upper C* (Tref) bins of 10-4 

and 101 μg m-3, respectively. The selection of the lower and upper bins are determined by the highest TD operating temperature 

(180 ˚C) and the average ambient OA loading (COA ~ 5 μg m-3), respectively. With the above C* bin limits, materials having 25 

C* < 10-4 μg m-3 are lumped into the lowest bin, while materials having C* > 10 μg m-3 are not represented.  Note, if a C* bin 
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of 100 μg m-3 is included, Eq. 1 indicates less than 5% of the material in this bin will be in the condensed-phase at COA ~ 5 μg 

m-3. Therefore, C* bins > 10 μg m-3 are not well constrained by our TD data and are not included in our analysis. 

The general approach to fitting a volatility parameterization employed in this study is similar to that applied to laboratory 

aerosol systems (Saha et al., 2015; Saha and Grieshop, 2016). Briefly, the kinetic model tracks both particle- and gas-phase 

concentrations of model species (each represented by a VBS bin) as they proceed through TD operated at a particular 5 

temperature and residence time. The model takes inputs of several aerosol properties (e.g., C* distribution, ΔHvap, diffusion 

coefficient (D), surface tension (σ), molecular weight (MW) and density (ρ)), total aerosol loading (COA) and particle diameter 

(dp) and determines how much aerosol mass concentration will evaporate for a set of input parameters at a particular TD 

temperature and residence time. Non-continuum effects on mass transfer are represented using the Fuchs−Sutugin correction 

factor, which depends on γe. The model is applied in an inverse sense to extract OA properties such as the volatility distribution, 10 

ΔHvap, and γe as fitting parameters by matching measured and modeled evaporation data. Values of D, σ, MW, and ρ generally 

have a smaller influence on observed evaporation (Cappa and Jimenez, 2010; Saha et al., 2015), and are approximated from 

literature values (Table S-1). Volume median diameter was used as a representative dp. For simplicity, a large (ΔHvap, γe) space 

was considered for fitting a fi distribution of measured OA. Following previous work (Epstein et al., 2010; May et al., 2013), 

a linear relationship was assumed between ΔHvap and log10C* with ΔHvap,i  = intercept-slope (log10C*
i,298), where intercept and 15 

slope are fit parameters. Values for ΔHvap intercept = [50, 80, 100, 130, 200] and slope = [0, 4, 8, 11] KJ mol-1 were applied 

along with γe = [0.01, 0.05, 0.1, 0.25, 0.5, 1]. γe was assumed constant over all bins, and is an effective parameter representing 

all kinetic limitations within the condensed-phase and at the particle surface. 

A distribution of fi was solved for each combination of (ΔHvap, γe) applying the non-linear constrained optimization solver 

‘fmincon’ in Matlab (Mathworks, Inc.) by first fitting TS-TD data; ‘accepted’ solutions were then further refined by fitting 20 

VRT-TD observations. A constraint of Σfi =1 was used. The goodness of fit was quantified in terms of the sum of squared 

residual (SSR) values. For the campaign average fit, an ‘acceptance’ threshold value for SSR was selected based on observed 

variability (±one standard deviation) in measurements. A parameter set (fi, ΔHvap, and γe) was considered a finally ‘accepted’ 

solution if it optimally reproduced both TS-TD and VRT-TD observations within the observed variability. The ‘best fit’ is 

defined as that with the lowest SSR value among all the accepted combinations.  25 

2.5 Simulation of OA in a chemical transport model 

Considering that VBS-based parameterizations are becoming common means to enhance the simulation of OA in chemical 

transport models (CTMs) (Farina et al., 2010; Lane et al., 2008b; Matsui et al., 2014; Shrivastava et al., 2013), measurements 

of OA volatility provide a useful means by which to evaluate these simulations. We compared OA volatility distributions 

measured in this study to those resulting from CTM simulations with a current VBS-based parameterization implemented in a 30 

modified version of the Weather, Research and Forecasting model with Chemistry (WRF/Chem) v3.6.1 (Wang et al., 2015; 

Yahya et al., 2016b). The WRF/Chem simulation uses the Carbon Bond version 6 (CB6) gas-phase mechanism (Yarwood et 
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al., 2010) coupled by Wang et al. (2015) to the Model for Aerosol Dynamics for Europe – Volatility Basis Set (MADE/VBS) 

(Ackermann et al., 1998; Ahmadov et al., 2012; Shrivastava et al., 2011). The CB6-MADE/VBS treatment includes 

semivolatile POA and SOA, as well as a fragmentation and functionalization treatment for multi-generational OA aging based 

on Shrivastava et al.(2013). The fragmentation and functionalization treatment in this case assumes 25% fragmentation for the 

third and higher generations of oxidation (Shrivastava et al., 2013). The ranges of C* values used in WRF/Chem  simulation 5 

are defined based on current SOA and semi-volatile POA parametrizations and were 100 to 103 μg m-3 for ASOA 

(anthropogenic-SOA) and BSOA (biogenic-SOA), 10-2 to 106 μg m-3 for POA and 10-2 to 105 μg m-3 for SVOA (semi-volatile 

OA), where SVOA refers to oxidized OA from evaporated POA. The semi-empirical correlation for ΔHvap by Epstein et al. 

(2010) was used to estimate temperature-dependent partitioning. 

The simulations are performed at a horizontal resolution of 36-km with 148 × 112 horizontal grid cells over the continental 10 

U.S. domain and parts of Canada and Mexico, and a vertical resolution of 34 layers from the surface to 100-hPa. Anthropogenic 

emissions in 2010 are based on the 2008 National Emissions Inventory (NEI) from the Air Quality Model Evaluation 

International Initiative (AQMEII) project (Pouliot et al., 2015). Biogenic emissions are simulated online by the Model of 

Emissions of Gases and Aerosols from Nature v2.1 (MEGAN2.1) (Guenther et al., 2012). The chemical initial and boundary 

conditions (ICs/BCs) come from the modified Community Earth System Model/ Community Atmosphere Model 15 

(CESM/CAM v5.3) with updates by He and Zhang (2014) and Gantt et al.(2014). The meteorological ICs/BCs come from 

National Center for Environmental Protection Final Analysis (FNL) data.  

3. Results  

3. 1. Overview of campaign characteristics 

The two field campaigns were conducted in settings with distinct local emission sources and metrological conditions. The 20 

Centreville campaign was during summer (T=24.7 ± 3.3˚C, RH = 83.1 ± 15.3%). Local organic emissions surrounding the 

Centreville site are dominated by BVOCs since this site is located in a forest and biogenic emissions substantially increase 

with temperature (Lappalainen et al., 2009; Tarvainen et al., 2005; Warneke et al., 2010). In contrast, Raleigh measurements 

were in a setting with substantially stronger anthropogenic emissions during fall/winter (T=12.7 ± 6.0˚C, RH = 65.7 ± 18.8%). 

Comparison of long-term data from an air quality monitoring station near the Raleigh site shows substantially higher NOx (5-25 

10 fold) and CO (2-4 fold) concentrations relative to those observed at Centreville (See Fig. S3). However, the Raleigh-Durham 

metropolitan area has plentiful tree cover and thus substantial local BVOC emissions. For instance, α- and β-pinene 

concentrations measured in summer at Centreville and Duke Forest (about 40 km Northwest of the Raleigh site) are in the 

same range (Fig. S4). However, since the Raleigh campaign was conducted at lower temperature conditions, local BVOC 

emissions are expected to be lower by a factor of 3 to 4 (Fig S.4). Measurements in such diverse but similar ecological settings 30 

allows us to examine the consistency of OA volatility under varying levels of biogenic and anthropogenic contribution. 
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Figs. S5 to S7 show average meteorological conditions, submicron aerosol size distributions, chemical composition and 

their temporal variations over the campaign periods. Ambient submicron particle number concentrations (10-600 nm) were 

higher in Raleigh (Centreville: 1500-3000 cm-3, Raleigh: 3000-6000 cm-3) and particle size was relatively smaller (volume 

median diameter, Centreville: 275 ± 30 nm, Raleigh: 227 ± 34 nm) (Fig. S6). Organic species were the dominant component 

in non-refractory submicron aerosol (PM1) as measured by the ACSM at both sites (Centreville: 71± 10 %, Raleigh: 76 ± 8 5 

%). The campaign average ± one standard deviation of ACSM-derived OA mass concentrations were 5.2 ± 3.0 μg m-3 in 

Centreville and 6.7 ± 3.6 μg m-3 in the Raleigh campaign, assuming a collection efficiency (CE) of 0.5. Application of the 

‘coarse’ tracer m/z based factor analysis approach to decompose OA mass spectra (Ng et al., 2011b), the majority of OA 

measured at both sites was oxygenated-OA (OOA). While approximately 7% of campaign averaged OA mass concentration 

in Raleigh was classified as hydrocarbon-like OA (HOA), the HOA contribution at the Centreville site was negligible. Positive 10 

matrix factorization (PMF) results from high-resolution mass spectra collected at the Centerville site (Xu et al., 2015a, 2015b) 

and their linkage with the measured OA volatility are discussed in sections 3.3 and 3.4, below.  

3. 2. Observed campaign average evaporation of OA 

Fig.2 shows the campaign average OA MFR as a function of TD temperature and residence time. (1-MFR) at a TD temperature 

and residence time indicates what fraction of bulk OA mass evaporates at that condition. It is important to note that MFR at a 15 

given temperature is not a consistent descriptor of OA volatility because it depends on many parameters related to TD 

experimental conditions (e.g., Rt) and sampled aerosol (e.g., COA, dp). Therefore, MFR data should not be interpreted as a direct 

measure of OA volatility or even directly compared (unless experiments are conducted under identical conditions). 

Fig. 2a (MFR vs. temperature, frequently called a thermogram plot) shows TS-TD measurements from this study along 

with one other measurement from SOAS (Hu et al., 2016) and several previous field and laboratory measurements. The 20 

campaign average OA MFRs measured at the two sites in the southeastern US, under relatively consistent COA ~ 5 μg m-3, were 

found to be quite similar. Approximately 60 -70% of OA mass evaporated after heating at 100℃ with a residence time of 50 

s. The campaign average T50 and T90 (temperature at which 50% and 90% of OA mass evaporate, respectively) with a residence 

time of 50 s were ~ 78℃ and ~ 180℃, respectively. Data from α-pinene chamber SOA experiments collected using the same 

dual-TD setup at atmospheric conditions (dark ozonolysis, COA ~ 5 μg m-3), described in Saha and Grieshop (2016), are also 25 

shown. Relative to the ambient observations, the lab SOA data show similar evaporation behavior in the lower temperature 

range (40-90 ˚C), but relatively greater evaporation at higher temperatures.  

Fig. 2b and 2c show the campaign-average estimated OA MFRs at various residence times with the VRT-TD operated at 

60˚C and 90˚C, respectively. Results show increased evaporation with longer residence time. In Fig. 2a, data are color coded 

by the TD residence time used in each study. A substantial effect of residence time on the observed evaporation is consistent 30 

with that observed across TD measurements from several previous field studies. This effect of residence time on observed 

MFR strongly suggests that comparisons of OA volatility across studies should not be made based on measured MFRs. Doing 
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so may bias inferences about differences in aerosol volatility. Observed evaporation depends on TD residence time  and many 

physical and chemical properties of sampled aerosol (Cappa, 2010; Riipinen et al., 2010; Saleh et al., 2011), unless the aerosol 

reaches equilibrium inside a TD (saturates the gas phase across the volatility range). The equilibration time of aerosol in a TD 

is dictated by many parameters including particle size distribution, diffusion coefficient (D) and evaporation coefficient (γe) 

and is typically several minutes or more under atmospheric (low COA) conditions (Saleh et al., 2011, 2013).  5 

Following the method of Saleh et al. (2013), the estimated characteristic equilibration times for the sampled aerosol in the 

Centreville and Raleigh measurements are 147-470 s and 150-450 s, respectively, assuming unhindered mass transfer (γe = 1). 

These calculations are based on the interquartile ranges of particle number concentrations (Np) and condensation sink diameter 

(dcs) measured in Centreville (Np ~ 1500-3000 cm-3,  dcs ~ 125- 170 nm) and Raleigh (Np ~ 3000-6000 cm-3, dcs ~ 80- 105 nm), 

D = 3.5 × 10 -6 m2 s-1 and MW = 200 g mol-1. A factor-of-ten reduction in γe relative to ideal accommodation (γe = 0.1) increases 10 

equilibration time by an order of magnitude. The observed continuous downward slope of MFR versus residence time (Fig. 

2b, c) suggests that equilibrium was not reached in the TD during the maximum Rt of 50 s. This result implies that TD 

measurements in an ambient setting are essentially a measure of the evaporation rate of sampled aerosol, rather than one of 

volatility/C*, an equilibrium thermodynamic property. Therefore, an evaporation kinetic model is needed to extract volatility 

parameter values from ambient TD data. 15 

3.3. Extracted OA volatility parameter values 

Fig. 3 presents the results of the extraction process used to determine parameters dictating gas-particle partitioning (fi, ΔHvap, 

γe); the example shown is for a fit to the Centreville campaign-average data, though the same process was conducted for all 

fits. Fig. S8 shows a similar plot for the Raleigh data set. Fitting results show that a broad range of γe (0.05 to 1) can reproduce 

the TS-TD observation within observed variability (i.e., error bars in Fig. 2) for several ΔHvap combinations (accepted TS-TD 20 

fits are shown with filled inner circles). The inclusion of VRT-TD data provides additional constraints for parameter fitting. 

Only the points with white crosses (x) in Fig. 3 recreate both TD data sets; a larger sized ‘x’ represents a better fit. Thus, VRT-

TD data help to narrow the possible solution space. Fig. 3 shows that ΔHvap = 100 KJ mol-1 and γe = 0.5 provide the overall 

best fit for the Centreville data set. For the Raleigh data set, ΔHvap of both 80 (marginally better) and 100 KJ mol-1 with γe = 

0.5 provide similarly good fits (Fig S8). For simplicity, ΔHvap = 100 KJ mol-1 and γe = 0.5 are considered as best estimates for 25 

both data sets for the next portion of the paper.    

These results are inconsistent with a very small value of OA evaporation coefficient (e.g., γe << 0.1) that would indicate 

significant resistance to mass transfer during evaporation, which has been suggested previously based on dilution (Grieshop 

et al., 2007, 2009; Vaden et al., 2011) and heating (Lee et al., 2011) experiments. Our best estimate of γe ~ 0.5 is consistent 

with the observations of Saleh et al. (2012), in which they report an γe ~ 0.28 to 0.46 for ambient aerosols in Beirut, Lebanon 30 

via measured equilibration profiles of concentrated ambient aerosols (COA ~ 200-300 μg m-3) after heating in a TD at 60 ˚C. 

Our results show that an effective γe ~ 0.1 to 1 can explain dual-TD data to within observed variability, suggesting that there 
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is no extreme resistance to mass transfer such as what might be encountered due to a glassy-solid or highly-viscous aerosol. 

Some previous assertions of highly inhibited evaporation (Grieshop et al., 2007; Vaden et al., 2011) were likely biased as they 

assumed volatility distributions based on smog-chamber yield experiments that likely overestimated the volatility, and thus 

expected evaporation rate of lab OA (Saha and Grieshop, 2016; Saleh et al., 2013).  

Our fitting results show that a ΔHvap intercept of 80 -130 KJ mol-1 and slopes of 0 or 4 KJ mol-1 can be used to explain 5 

campaign average observations (Fig. 3, Fig. S6). These ΔHvap values are consistent with those of atmospherically-relevant low-

volatility organics such as dicarboxylic acids (Bilde et al., 2015), but distinct from those typically assumed (30 - 40 KJ mol-1) 

for atmospheric modeling (Farina et al., 2010; Lane et al., 2008b; Pye and Seinfeld, 2010). The semi-empirical correlation 

based fit from Epstein et al.(2010) (ΔHvap=130-11 log10C*) has steeper log10C* dependence than those able to explain our 

observations (Figs. 3, S8).    10 

Although several ΔHvap and γe combinations can recreate observations from both TDs within variability (Figs. 3, S8), to 

enable comparison of C* distributions we adopt our best estimates of ΔHvap and γe (ΔHvap = 100 KJ mol 1 and γe = 0.5) for 

further analysis of data from both campaigns. Campaign-average fi distributions corresponding to that (ΔHvap, γe) are the basis 

for model fits shown in Fig. 2. The ‘campaign-average’ fi distribution was derived by fitting campaign-average dual-TD 

observations (Fig. 2) and using campaign-average COA and dp. A fi distribution was also fit based on all the individual 15 

measurements from the campaign (MFR, COA, dp; 20-30 minute time resolution) using ΔHvap = 100 KJ mol -1 and γe = 0.5; we 

term this the ‘unified’ fit. The ‘campaign-average’ and ‘unified’ fi distributions for the Centreville and Raleigh data set are 

listed in Table 1. In addition to the volatility distribution (fi), we also show estimates of mean C* (𝐶∗̅̅ ̅; estimated as 𝐶∗̅̅ ̅ =

 10∑ 𝑓𝑖 log10 𝐶𝑖
∗
) to quantify the center of mass (central tendency) of different volatility distributions. Another way to collapse a 

distribution to a single value (also reported in Table 1) is the effective C* (𝐶𝑒𝑓𝑓
∗ ) of the ensemble, estimated as, 𝐶𝑒𝑓𝑓

∗ = ∑ 𝑥𝑖 𝐶𝑖
∗, 20 

where xi is the condensed-phase mass fraction in each 𝐶𝑖
∗ bin and Σ xi =1. While the volatility parameter values reported in 

Table 1 are the best fit results, other parameter sets can reproduce observations within variability. Application of fi distributions 

reported in Table 1 must be with reported γe and ΔHvap values. Sensitivities of the estimated volatility parameter values to 

assumed values of D, σ, MW, and ρ are discussed in Saha et al.(2015) and Saha and Grieshop(2016). These assumed parameters 

have relatively minor effects on observed evaporation in a TD compared to C*, γe, and ΔHvap. 25 

The extracted campaign-average and unified-fit OA volatility distributions (fi) and corresponding 𝐶∗̅̅ ̅  and 𝐶𝑒𝑓𝑓
∗  from 

Centreville and Raleigh data sets are quite similar (see Table 1). A large portion of the measured OA (40-70%) at both sites is 

composed of very low-volatility organics (LVOCs; C*≤ 0.1 μg m-3, Donahue et al., 2012). It is somewhat surprising that results 

from two field campaigns, which occurred in distinct scenarios with varying level of biogenic and anthropogenic emissions, 

results in such similar OA volatility distributions. This finding is consistent with those of Kolesar et al.(2015a), who report 30 

similar mass thermograms for laboratory SOA formed from a variety of anthropogenic and biogenic VOCs under different 

oxidant (O3, OH) conditions. Our extracted ambient OA volatility distributions are also comparable to those previously derived 
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from TD measurement in Mexico City (Cappa and Jimenez, 2010) and Finokalia, Greece (Lee et al., 2010). However, the 

ambient OA volatility distributions determined here are relatively less volatile than those from chamber-generated fresh SOA 

from α-pinene ozonolysis (Table 1). 

Fig. 4a demonstrates a forward modeling exercise to show how the extracted average volatility parameter values (fi, ΔHvap, 

and γe; those listed in Table 1) can reproduce individual measurements from the whole Centreville campaign as well as TD 5 

data from other groups (Cerully et al., 2015; Hu et al., 2016) during SOAS. The results show that a single set of volatility 

parameter values (campaign average/unified fit fi, γe = 0.5 and ΔHvap = 100 KJ mol-1) reproduce individual observations from 

the whole campaign within approximately ± 20%. These parameter values also closely reproduced the measured campaign 

average OA MFRs from the University of Colorado TD (Rt ~ 15 s) (Hu et al., 2016) and Georgia Tech TD (Rt ~ 7 s) (Cerully 

et al., 2015) collected during the Centreville campaign (see solid blue squares and cyan triangles in Fig. 4a). MFRs reported 10 

in Cerully et al. (2015) are for the total submicron aerosol species. These were converted to OA MFRs applying the method 

given in SI Sec. S1 to enable direct comparison with modeled OA MFRs.   

Fig 4b shows a comparison of the extracted campaign-average OA volatility distribution from this study with those from 

two other independent approaches during the Centreville campaign (Hu et al., 2016; Lopez-Hilfiker et al., 2016). Hu et al. 

(2016) report OA volatility distributions from observed evaporation in a TD during the Centreville campaign fit using the 15 

method given by Faulhaber et al.(2009). In this method, TD evaporation observations at different temperatures are translated 

to a volatility distribution using an empirically derived calibration curve based on evaporation of known compounds and their 

C* (Faulhaber et al., 2009). Our derived distribution from dual-TD observations coupled with evaporation kinetic model is 

comparable to that from Hu et al. (2016), although this distribution is slightly less volatile than ours. Lopez-Hilfiker et al. 

(2016) derived an OA volatility distribution from Centreville measurements with the Filter Inlet for Gases and AEROsols-20 

Chemical Ionization Mass Spectrometer (FIGAERO-CIMS), which thermally desorbs filter-bound aerosol into a CIMS. The 

FIGAERO-derived distribution is several orders of magnitude less volatile than ours; all OA in it has C* ≤ 10-4 μg m-3. 

Therefore, in Fig.4b the Centreville campaign-average COA of ~ 5 µg m-3 is assigned to the log10C* ≤ -4 bin to enable direct 

comparison with TD-ACSM/AMS measurements (this study and Hu et al.). However, in reality FIGAERO-CIMS observations 

accounted for ~50% of AMS organic mass concentrations measured at Centreville (Lopez-Hilfiker et al. 2016), indicating half 25 

the OA was not quantified. The discrepancy between FIGAERO- and TD-based distributions would be reduced if this 

unmeasured OA is distributed in higher volatility bins, thus re-assigning material shown in the lowest volatility bin in Fig. 4b. 

Lopez-Hilfiker et al. (2016) reported that heating OA at higher temperatures has the potential to introduce artifacts into 

quantification of its volatility, for example if it causes oligomer decomposition leading to artificially high volatility. If this 

occurs, this may bias any heating-based measurement approaches, including TD measurements.   30 

A test for these various parameter values is to use them to recreate data from other (non-heating-based) perturbations of 

gas-particle partitioning. Fig. 5 shows evaporation kinetics of OA upon continuous stripping of vapors under isothermal (25 

˚C) conditions simulated using volatility parameter values from multiple independent approaches. The simulation framework 
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used here is described elsewhere (Saha and Grieshop, 2016). The shaded region in Fig.5 shows the prediction range applying 

dual-TD derived parameter values from this study within estimated uncertainty ranges (campaign average and unified fits of 

fi, γe = 0.1 to 1) with initial COA values from 2 to 10 μg m-3 and dp = 100 nm and 150 nm. Simulations are also shown with the 

OA volatility distribution from Hu et al.(2016) and FIGAERO-CIMS-derived OA volatility distribution (Lopez-Hilfiker et al., 

2016) from Centreville measurements. The room temperature evaporation data from Vaden et al. (2011) measurements of 5 

ambient aerosols during the Carbonaceous Aerosols and Radiative Effects Study (CARES-2010) field campaign in 

Sacramento, California are also shown. This study attributed the observed slower-than-expected evaporation to extreme kinetic 

limitations to mass transfer (γe << 0.1). Although a direct comparison of observations collected in California and simulations 

based on volatility distributions from Centreville is not ideal, the consistency of volatility behavior across our and other sites 

(Fig. 2; Table 1) suggests it is reasonable. Fig. 5 shows that these data fall within the range of values simulated using our TD-10 

estimated volatility parameter values (γe ≥ 0.1). The Hu et al. (2016) volatility distribution with γe = 1 also recreates these data. 

In contrast, simulations with the FIGAERO-CIMS-derived OA volatility distribution (Lopez-Hilfiker et al., 2016) from 

Centreville measurements (assuming γe = 1) predict almost zero evaporation (dashed black line in Fig. 5). This distribution 

thus appears to be inconsistent with our observations and those from room temperature evaporation experiments.  

3.4 Temporal variation of OA volatility 15 

A time series of OA volatility distributions extracted over the campaign period is shown in Figs. 6 (Centreville) and S10 

(Raleigh). The volatility distributions (fi) were extracted as described above from ~ 6-hour windows with fixed ΔHvap = 100 

KJ mol-1 and γe = 0.5 based on the best estimates from campaign-average fits. The average and (95% confidence interval) of 

𝐶∗̅̅ ̅ (μg m-3) are 0.18 (0.05 - 0.54) and 0.16 (0.04 - 0.43) for the Centreville and Raleigh data sets, respectively, in line with 

values from the campaign-average and unified fits. The OA volatility distributions do not vary dramatically over the campaign 20 

period for either site. Ambient OA concentrations (COA) shown in Fig. 6a (Centreville) and S10a (Raleigh) suggest that there 

was no consistent relationship between COA and OA volatility. Overall, there is a no apparent trend in OA volatility for either 

site.  

Fig. 6b shows a time series of the fractional contribution of isoprene-derived OA and more-oxidized oxygenated OA (MO-

OOA) (Xu et al., 2015a, 2015b) to total OA during the Centreville campaign. Isoprene was the dominant biogenic VOC (> 25 

80% of total VOC mass) measured during Centreville campaign (Xu et al., 2015b), and is the biogenic VOC with greatest 

global emissions (Sindelarova et al., 2014). Isoprene-derived OA contributed ~ 17-18% to the campaign average COA at the 

Centreville site during the SOAS (Hu et al., 2015; Xu et al., 2015a, 2015b) while MO-OOA contributed ~ 39% (Xu et al., 

2015a, 2015b). Lopez-Hilfiker et al. (2016) reported isoprene-derived OA was more volatile than the remaining OA using 

FIGAERO-CIMS measurements at the Centreville site. This result contradicts with Hu et al. (2016), who reported a lower 30 

volatility of isoprene-derived OA than the bulk OA using TD measurements at the same site. Since our derived volatility 

distributions are for the bulk OA, we cannot make a specific comment on the volatility of isoprene-derived OA. However, if 
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the volatility of isoprene-derived OA differs substantially from the remaining bulk, OA volatility might be expected to co-vary 

with the fractional contribution of isoprene-OA to COA. Fig. 6c shows extracted bulk OA volatility distributions and their mean 

C* over the Centreville campaign period. Fig.6d shows a scatter plot of mean C* versus the fractional contribution of isoprene-

OA to COA; the two show no correlation. This result indicates that the effective volatility of isoprene-OA may not be 

substantially different than the remaining bulk OA. If there is a difference we cannot differentiate this effects from bulk OA 5 

volatility, potentially due to the contributions of other components to bulk OA. 

Diurnal trends in OA volatility distributions are shown in Figs. 7 (Centreville) and S11 (Raleigh). Results show that OA 

appeared relatively less volatile in the afternoon than early in the morning for both sites, consistent with previous field 

measurements in Mexico City (MILAGRO) and Riverside (SOAR-1) (Huffman et al., 2009). Fig. 7a shows diurnal trends of 

OA factors derived from PMF analysis during the Centreville campaign (Xu et al., 2015a, 2015b). Less-oxidized oxygenated-10 

OA (LO-OOA; average O:C ~ 0.63) dominated in the early morning (~40-50 %) while more-oxidized oxygenated-OA (MO-

OOA; average O:C ~ 1.02) was the largest OA component in the afternoon (~50%). Xu et al.(2015a) hypothesized that 

oxidation of monoterpenes forms a large portion of observed LO-OOA in the Southeastern U.S. via NOx and O3 (NO3 radical) 

pathways, and that organo-nitrates contribute substantially to LO-OOA (20-30%). Laboratory chamber experiments also 

suggest that nitrate-containing species make a significant contribution to SOA formed during terpene 15 

photooxidation/ozonolysis under high NOx conditions (Ng et al., 2007; Presto et al., 2005), and from reactions with nitrate 

radicals (Boyd et al., 2015). Lee et al. (2011) observed greater evaporation in a TD of α-pinene and β-pinene ozonolysis SOA 

formed under high NOx conditions than under low NOx condition. Thus the higher volatility observed in the morning can 

likely be linked with the prevalence of LO-OOA and possible contributions from organo-nitrates. In contrast, bulk OA was 

dominated by MO-OOA in the afternoon. That OA is relatively less volatile in the afternoon is consistent with the observation 20 

that OA volatility often decreases with increased oxidation (during functionalization) (Jimenez et al., 2009). Fig. 8 shows 

scatter plots of 𝐶∗̅̅ ̅ versus LO-OOA and MO-OOA fractions of OA during the Centreville campaign. Although the average 

slopes of the scatter plots show an increase (decrease) of 𝐶∗̅̅ ̅  with increasing LO-OOA (MO-OOA) fraction, respectively, these 

correlations are not strong (correlation coefficient; r ~ 0.5). A poor correlation between 𝐶∗̅̅ ̅  and OA factors is also observed in 

the Raleigh data set. For example, Fig. S12 shows scatter plots of 𝐶∗̅̅ ̅  versus tracer m/z based HOA fraction and OOA fraction 25 

estimates (Ng et al., 2011b) with an average slope of – 0.3 ± 0.16 (r ~ 0.2) for HOA and - 0.12 ± 0.11 (r ~ 0.1) for OOA. The 

observed link between OA volatility and oxidation state is further discussed in sec. 3.5.   

3.5 Average volatility and oxidation state of OA 

Fig. 9 explores the link between average carbon oxidation state, 𝑂𝑆𝑐
̅̅ ̅̅ ̅, calculated as 2× O:C - H:C (Kroll et al., 2011), and 𝐶∗̅̅ ̅. 

O:C and H:C are estimated from an empirical parameterization of OA elemental ratio from unit mass resolution data, given by 30 

Canagaratna et al. (2015) as a function of f44 (O:C = 0.079 + 4.31× f44 ) and f43 (H:C = 1.12 + 6.74 ×f43 – 17.77 × 𝑓43
2 ) , 

respectively. f44 and f43 are the fractional ion intensity at m/z 44 and 43, respectively, taken from ACSM measurements. The 
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estimated OA elemental ratios using the above empirical parameterizations are in relatively good agreement with those 

determined via elemental analysis of the high resolution mass spectra data (HRToF-AMS) collected by other groups during 

SOAS. For example, our estimated campaign average O:C during Centreville campaign (0.68 ± 0.07) is within 1-2 standard 

deviation of that determined in Xu et al.(2015b) (~ 0.78). 

The scatter plot of 𝑂𝑆𝑐
̅̅ ̅̅ ̅ versus 𝐶∗̅̅ ̅  (Fig. 9) shows a mild downward trend, which is suggestive of lower-volatility OA being 5 

associated with higher oxidation state. However, the correlation is not statistically robust (r < 0.3). This is consistent with the 

observations of Xu et al.(2016) and Paciga et al. (2015) who reported weak association between average oxidation state and 

volatility for OA measured in the London and Paris areas, respectively. The campaign-average 𝑂𝑆𝑐
̅̅ ̅̅ ̅ during the Centreville 

measurements (-0.18 ± 0.15) was higher than in Raleigh (-0.42 ± 0.16) (p-value << 0.0001), whereas campaign-average 𝐶∗̅̅ ̅ 

values were essentially identical (Centreville: 0.18 ± 0.14, Raleigh: 0.16 ± 0.12 µg m-3; p-value > 0.1). 10 

3.6 Application of measured volatility distribution to evaluate simulated OA in a CTM 

Fig. 10 compares the measured and simulated OA volatility distributions at Centreville for June, 2013. The simulated OA 

volatility distribution in the C* bins between 100 and 101 μg m-3 agrees reasonably well with observations. The model predicts 

a dominance of BSOA in the two bins, consistent with observations in the Centreville region. However, large discrepancies 

exist between the observed and simulated OA volatility distribution in the C* bins between 10-2 and 10-1 μg m-3. The model 15 

tends to greatly underpredict the OA concentrations in this volatility range. WRF/Chem did not reproduce the observed portion 

of the mass of OA in the lower C* bins, from 10-4 to 10-1 μg m-3, because the VBS SOA module in this version of WRF/Chem 

does not treat volatility in this range. Consistent with the measurement results from this study, a number of laboratory (Ehn et 

al., 2014; Jokinen et al., 2015; Kokkola et al., 2014; Zhang et al., 2015) and field (Hu et al., 2016; Lopez-Hilfiker et al., 2016) 

studies have reported a significant fraction of SOA from biogenic precursors is low-volatility. These low volatility materials 20 

are missing in the WRF/Chem simulation. 

The simulated total OA mass concentration (COA) was underpredicted by a factor of 2 to 3 at Centreville during the SOAS 

period. Several factors may contribute to this underprediction. Comparison of WRF/Chem predictions of most relevant 

meteorological variables and major precursor VOCs with measurements collected during the SOAS shows a relatively good 

performance (Yahya et al., 2016a). For example, the mean biases for simulated temperature at 2 m, relative humidity at 2 m, 25 

and wind speed at 10 m are -0.9 ºC, -0.8%, and 0.3 m s-1, respectively. The normalized mean bias (NMB) of the simulated 

planetary boundary layer height (PBLH) is -38%, which would tend to bias OA concentrations high, suggesting that the 

underprediction in PBLH is not responsible for the underpredictions of OA. In terms of VOC concentrations, the model 

performs well for β-pinene and formaldehyde with NMBs of -8.5% and -4.3%, respectively, but underpredicts α-pinene with 

an NMB of -51.7% and significantly overpredicts limonene with an NMB of 249% (Figure not shown). The WRF/Chem 30 

simulation only considers the SOA formed from a few BVOCs including isoprene, α-pinene, β-pinene, limonene, humulene, 

and ociene and does not account for contributions from other BSOA precursors such as other sesquiterpenes. Therefore, 
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underestimation of precursor VOC emissions and missing precursors may contribute to OA underprediction. Other sources of 

uncertainty in the VBS treatment in WRF/Chem include the coarse spatial resolution in the model simulation, the assumed 

fraction of OA added for each oxidation/aging step, the assumed fragmented and functionalized percentages of organic 

condensable vapors, as well as the uncertainties in the dry and wet deposition velocities of SOA and SOA precursors. These 

factors can also contribute to the discrepancies between the model and observed COA at Centreville. 5 

One likely contributor to the model’s under-prediction is issues with the SOA yield parameterizations in the model. Smog 

chamber growth-experiment-derived mass yield coefficients (i.e., distributions of product mass yield in different volatility/C* 

bins) (Pathak et al., 2007) are used to model SOA in a CTM. The estimated SOA yield from a traditional smog chamber 

experiment could be underestimated due to wall losses of condensable vapors. For example, Zhang et al. (2014) showed up to 

a factor of 4 yield underestimation for toluene SOA due to this fact. The high and low NOx mass yields used in WRF/Chem 10 

simulations for ASOA and BSOA are based on traditional smog chamber yield experiments, taken from Lane et al.(2008b).  

These distributions do not consider mass yields from the C* bins 10-4 to 10-1 μg m-3, where a significant portion of the OA 

mass was observed. The substantial amounts of low volatility materials are typically missing in these traditional yield 

measurement based distributions (Kolesar et al., 2015b; Saha and Grieshop, 2016). Our recent dual-TD-based effort to 

determine the SOA mass yield distribution for α-pinene ozonolysis (Saha and Grieshop, 2016) indicates products are 15 

substantially less volatile than the parameterizations used in current models (including that discussed above). This α-pinene 

product distribution suggests a factor of 2-4 more SOA yield under atmospherically relevant conditions compared to traditional  

distributions from smog chamber growth experiments. Updating SOA mass yield coefficient data is likely required for all 

known precursors, and may lead to large improvements in model predictions of both COA and OA volatility distributions.  

The WRF/Chem simulation used the semi-empirical ΔHvap correlation derived by Epstein et al. (2010) (ΔHvap = 130 -20 

11log10C*, 298K), which gives higher values, with a steeper log10C* dependence, than TD-derived values. Since WRF/Chem-

predicted COA was a factor of 2-3 underestimated with the Epstein et al. (2010) ΔHvap values, use of lower values (e.g., 100 kJ 

mol-1 as suggested by our TD observations) will further increase the discrepancy between observed and simulated OA 

concentrations for a given mass yield distribution.  

4. Conclusions and Implications 25 

This paper presents results from ambient OA volatility measurements from two sites in the southeastern U.S. under diverse 

conditions. Measurement campaigns were conducted at a BVOC-dominated forested rural setting during summer and another 

more anthropogenically-influenced, but forested urban location under cooler conditions. This study applied a dual-

thermodenuder (dual-TD) setup that varied temperature and residence time in parallel. Ambient OA gas-particle partitioning 

parameters (C*, ΔHvap, γe) value were extracted by fitting observed dual-TD data using an evaporation kinetic model. The OA 30 

volatility distribution derived via inverse modeling is sensitive to ΔHvap, and γe values. The addition of variable residence time 
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TD (VRT-TD) data provided tighter constraints on the extracted parameter values. A ΔHvap of ~ 100 KJ mole-1 and γe of 0.5 

best explain observations collected at both sites, under diverse conditions. An effective γe value of ~ 0.1 to 1 can explain 

observed evaporations within variability while a very small γe value (γe << 0.1) cannot fit the observations from both TDs. The 

Epstein et al. (2010) ΔHvap correlation, which was determined based on measured properties of a variety of known compounds 

also did not reproduce the evaporation observed in this study. 5 

While measurement campaigns were conducted under different meteorological conditions at locations with differing levels 

of biogenic and anthropogenic emissions, the derived OA volatility distributions are found to be very similar. A substantial 

amount of OA (40-70%) at both sites was found to be of very low volatility (C*≤ 0.1 μg m-3) so will remain predominantly in 

the particle-phase (effectively non-volatile) under typical atmospheric conditions. OA volatility distributions also did not vary 

substantially over the campaign period. Our derived OA volatility parameterizations appear to be broadly consistent with 10 

observations of room temperature evaporation (Vaden et al., 2011) during CARES-2010 in California. The observed 

consistency in OA volatility across diverse settings is an important finding, which implies that OA in the atmosphere formed 

from a variety of sources can exhibit similar volatility properties and chemical signatures. This result also suggests that 

measurements of OA volatility distributions such as derived here could provide good diagnostics for overall model 

representativeness, but may not be as useful for diagnosing differences across sites and conditions.    15 

The diurnal profile of extracted OA volatility showed that bulk OA was relatively less volatile in the afternoon than early 

in the morning. This trend is consistent with the prevalence of LO-OOA (less oxidized) in the morning and MO-OOA (more 

oxidized) in the afternoon. However, while average O:C and/or oxidation state (𝑂𝑆𝑐
̅̅ ̅̅ ̅) of bulk OA is often considered linked to 

volatility, in our data sets correlations between mean oxidation state (𝑂𝑆𝑐
̅̅ ̅̅ ̅) and mean volatility (𝐶∗̅̅ ̅ ) were weak (r <0.3). This 

observed weak correlation and the fact that atmospheric OA is a complex mixture of organics of a broad range of volatilities 20 

and oxidation states, reinforces the need to measure and understand the distribution of both volatility and oxidation states. The 

2D-VBS framework (Donahue et al., 2012) offers one way to constrain these parameters in atmospheric models. While 

determination of OA volatility distributions was the focus of this study, future efforts also should measure distributions of 

volatility and oxidation states comprising ambient OA.   

The gas-particle partitioning parameters (C*, ΔHvap, γe) extracted from these measurements have important implications 25 

for the treatment and evaluation of OA in current atmospheric models. Since a CTM incorporating the VBS framework predicts 

OA concentrations in each volatility (log10C*) bin (i.e., OA volatility distribution), comparison of simulated and measured OA 

volatility distribution is an useful means for model evaluation beyond only comparing total OA concentration (COA).  Here, we 

compared our measured OA volatility distribution with that simulated by WRF/Chem. To our knowledge, this is the first direct 

evaluation (with observations) of OA volatility distributions simulated in a CTM using the VBS framework. This evaluation 30 

indicates that OA volatility distributions predicted in WRF/Chem are inconsistent with measurements over the C* range from 

10-4 to 10-1 μg m-3. This may give important clues towards the root causes of the model’s underestimation of COA by a factor 

of 2 to 3. In comparison to our TD-derived OA volatility distribution and other recent evidence (Ehn et al., 2014; Hu et al., 
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2016, 2016; Jokinen et al., 2015; Kokkola et al., 2014; Lopez-Hilfiker et al., 2016; Saha and Grieshop, 2016), low-volatility 

materials are mostly missing from the WRF/Chem predictions. Recent evidence of SOA from aqueous-phase oxidation in 

presence of abundant particle water (Carlton and Turpin, 2013; Marais et al., 2016), formation of oligomers and large molecular 

compounds directly in the gas- phase (Ehn et al., 2014) and via condensed phase chemistry (Kroll et al., 2015; Kroll and 

Seinfeld, 2008) suggest that complex and multi-phase formation and evolution processes produce SOA in the atmosphere. 5 

Many of these processes can produce very low-volatility organics and most are not included in current CTMs. These low-

volatility organics appear to make significant contributions to the atmospheric OA budget and cloud condensation nuclei 

formation (Jokinen et al., 2015). 

The ΔHvap and γe values extracted here for atmospheric OA in the Southeastern U.S. also have important implications for 

predicting OA concentrations in a CTM. First, a ΔHvap value of 30-40 KJ mol-1 (Farina et al., 2010; Lane et al., 2008b; Pye 10 

and Seinfeld, 2010) is typically assumed for modeling OA in a CTM, which is substantially lower than that suggested by our 

TD observations (~100 KJ mol-1 ). An increase of assumed ΔHvap value will increase atmospheric OA burden and lifetime for 

a particular input volatility distribution (Farina et al., 2010). Finally, a value of γe ≥ 0.1 indicates a gas-particle repartitioning 

timescale (Saleh et al., 2013) on the order of minutes to an hour under atmospherically relevant conditions (Np ~ 1000-5000 

cm-3). Therefore, the equilibrium phase-partitioning assumption typically made in CTMs should be reasonable for a prediction 15 

timestep of ~ 1 hour. 
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Table 1: Best fit OA volatility parameter values extracted from this study along with several previous field and lab studies 

Study  Centreville 

(this study) 

Raleigh 

(this study) 

FAME 

(Lee et al., 

2010) 

MILAGRO 

(Cappa and Jimenez, 2010) 

AP-SOA 

(Saha and 

Grieshop, 

2016) 

Campaign average 

 COA (μg m-3) 
5.2 6.7 2.8 17 5 

Note a b a b   c d c d e 

γe 0.5 0.5 0.5 0.5 0.05 1 1 1 0.1 0.1 0.1 

ΔHvap (KJ mol-1) 100 100 100 100 80 80 100 100 100 100 [80,11]ǂ 

logC*(μg m-3) fi 

-6       0.06  0.04   

-5       0.06  0.04   

-4 0.14 0.18 0.14 0.16   0.06 0.27 0.04 0.21 0.03 

-3 0.05 0.05 0.06 0.05  0.2 0.07 0.11 0.04 0.07 0.07 

-2 0.06 0.08 0.08 0.13 0.2 0.2 0.07 0.11 0.05 0.09 0.03 

-1 0.15 0.13 0.12 0.20 0.2 0.3 0.08 0.12 0.06 0.10 0.12 

0 0.29 0.33 0.28 0.20 0.3 0.3 0.10 0.15 0.1 0.18 0.18 

1 0.31 0.23 0.32 0.26 0.3  0.16 0.24 0.2 0.35 0.57 

2       0.34  0.43   

Mean  C* (μg m-3) 0.21 0.12 0.20 0.10 0.50 0.05 0.32 0.03 1.5 0.1 1.16 

  Csat_eff (μg m-3) 1.8 1.4 2.0 1.5 1.3 0.3 9.4 1.9 13.8 2.8 3.5 

aCampaign average dual-TD data fit with campaign average COA and dp. 5 

b Unified fit of individual measurement from whole campaign (MFR, COA, dp; 20-30 minute resolution data). 

 c The fi distribution derived from Ci,tot = a1+a2exp[a3(log(C*)-3)]; fi = Ci,tot /ΣCi,tot ; a1, a2, and a3 coefficients were taken from 

table 1 of Cappa and Jimenez (2010). log10C* bin ranged from -6 to +2, as in Cappa and Jimenez (2010).  

d Same as c, but only considered log10C* bin range of -4 to +1 to be consistent with the bin ranges used in this study. To do so, 

materials in log10C* < -4 bins are assigned to -4 bin, material at log10C* = 2 bin is excluded, and distribution is renormalized 10 

to make Σfi =1. 

 e Chamber generated SOA from low-COA α-pinene ozonolysis experiment applying renormalization approach described in 

note e to the distribution given in Saha and Grieshop (2016) SI, table S.5.    

ǂ ΔHvap (KJ mol-1) = 80-11logC*(μg m-3)  

 15 
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Figure 1: Dual thermodenuder aerosol volatility measurement setup used during field campaigns at two sites in the southeastern U.S. TS-

TD: Temperature stepping TD, VRT-TD: Variable residence time TD, Rt: Residence time, EFC: Extra flow control, ACSM: Aerosol 

chemical speciation monitor, SMPS: Scanning mobility particle sizer. 5 
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Figure 2: Measured (solid symbols) and modeled (solid thick lines) campaign average organic aerosol (OA) mass fraction remaining (MFR) 

as a function of TD temperatures (T) and residence times (Rt). The solid symbol shows mean value and error bar is ± one standard deviation 

of all campaign data at each (T, Rt) condition. Raw data at each (T, Rt) condition are averaged over 20-30 minutes. Model lines are shown 

using the ‘best fit’ volatility parameter values from campaign average TD data fit (parameter values listed in Table 1). TD measurement data 5 
from the Centreville site collected by the University of Colorado group at SOAS-2013 (Hu et al., 2016) are also shown. Measurements from 

several previous field studies are shown with various open symbols:  Hyytiala/2008-2010, Finland (Häkkinen et al., 2012); ClearfLo/2012, 

London (Xu et al., 2016); MILAGRO/2006, Mexico City (Huffman et al., 2009); SOAR-1/2005, Riverside, California (Huffman et al., 

2009); FAME/2008, Finokalia, Greece (Lee et al., 2010); MEGAPOLI/2009-10, Paris, France (Paciga et al., 2015). Chamber alpha-pinene 

SOA (dark ozonolysis, COA ~ 5 μg m-3, VMD ~ 140 nm) evaporation data are shown from Saha and Grieshop (2016). In panel-a, data are 10 
color coded by TD residence times used during measurements.  
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Figure 3: Extraction of OA gas-particle partitioning parameter (ΔHvap, γe and fi) values via evaporation kinetic model fits to campaign-

average dual-TD observations during the Centreville campaign. A relationship of ΔHvap = intercept-slope (log10C*) was assumed (e.g., 50-0 

on x-axis represents intercept =50 and slope = 0). Symbols and colors represent the goodness of fit. Points with filled inner circles recreate 5 
TS-TD observations and points with a white cross (x) recreate both TD data sets to within observational variability. Crosses represent the 

overall goodness of fit including both TS-TD and VRT-TD observations, with larger size corresponding to a better fit. 
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Figure 4: (a) Comparison of individual observations from the Centreville campaign and corresponding modeled MFRs applying the 

extracted fi distribution from the campaign-average fit. MFR data collected by other groups during the Centreville campaign are also shown: 

University of Colorado TD (CU TD; blue squares)(Hu et al., 2016) and Georgia-Tech TD (GT TD; cyan triangles) (Cerully et al., 2015) 

along with corresponding MFRs modeled applying volatility parameterizations from this study with the campaign average COA and dp. Fig. 5 
S9 shows an extended data figure of panel a, including similar plot using the fi distribution from the unified fit and analysis results for the 

Raleigh data set. (b) Comparison of the SOAS campaign-average OA volatility distribution (showing only condensed phase) derived from 

this study (dual-TDs; kinetic evaporation model fits), Hu et al.(2016) (TD; method of Faulhaber et al.(2009)), and Lopez-Hilfiker et al.(2016) 

(FIGAERO-CIMS). Error bars on data from this study are ± one standard deviation of distributions extracted over the campaign period 

(Fig.6).    10 
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Figure 5: Isothermal evaporation kinetics of OA at 25˚C (room temperature) upon continuous stripping of vapors. Shaded region shows the 

evaporation kinetic model prediction range applying TD-derived volatility parameter values from this study; solid line shows the mean 

estimate. Dashed lines show model predictions using the OA volatility distribution derived using alternative approaches during the 

Centreville campaign (Hu et al., 2016; Lopez-Hilfiker et al., 2016). Symbols show experimental data from Vaden et al. (2011) collected 5 
during the CARES-2010 field campaign in California.     
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Figure 6: Time series of (a) ambient organic aerosol concentrations; COA, (b) fractional contribution of isoprene OA and more-oxidized 

oxygenated OA (MO-OOA) to total OA determined from PMF analysis, and (c) OA volatility distribution (fi) and 𝑪∗̅̅ ̅  (open black circles) 

during the Centreville campaign. All data are averaged over ~ 6 hours (the time resolution of fi distribution). Panel (d) shows a scatter plot 

of 𝑪∗̅̅ ̅  verses isoprene-OA fraction in COA. Fig. S10 shows similar analysis results for the Raleigh data set. 5 
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Figure 7: Campaign average diurnal trends for the Centreville measurements of: (a) concentrations of total OA and OA factors, (b) OA 

volatility (fi and  𝑪∗̅̅ ̅), (c) OA MFR after heating at 60, 90 and 120 ˚C with a TD residence time of 50 s. Fig. S11 shows similar analysis 

results for the Raleigh data set. PMF factors in panel-a are LO-OOA: less-oxidized oxygenated OA; MO-OOA: more-oxidized oxygenated 

OA; Isoprene-OA: isoprene-derived OA (for details on OA factors analysis see Xu et al., 2015a, 2015b).   5 
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Figure 8: Scatter plot of mean C* verses (a) LO-OOA fraction, and (b) MO-OOA fraction in total OA concentration during the Centreville 

campaign. 
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Figure 9: Mean oxidation state (𝑶𝑺𝒄)̅̅ ̅̅ ̅̅ ̅̅ ̅ versus mean volatility(𝑪∗̅̅ ̅) measured during the Centreville and Raleigh campaigns. Dots are 

campaign data, dashed lines are linear regression fits of data, and symbols are the campaign average with error bar showing ±one standard 

deviation. 
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Figure 10: Comparison between measured OA volatility distributions and those simulated in WRF/Chem over the Centerville region. Bar 

height is mean, and error bar is ± one standard deviation of distributions extracted from measurements and simulations for June 2013. The 

inset shows a two-bin comparison (bin-1: C*≤1 μg m-3 and bin-2: C*=10 μg m-3). Simulated OA components include ASOA (anthropogenic-

SOA), BSOA (biogenic-SOA), POA (primary-OA), and SVOA (semi-volatile OA/oxidized POA). 5 
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